Audit dosimetri treatment planning system berkas foton pada radioterapi eksternal : A Review

Andrian Dede Handika, Sonak Tioria Tarigan, Petrananda Dea Karunia, Ahmad Syafi'i, Annisa Rahma Fauzia, Khaerul Mar'ie, Putri Amalia Pontoh, Supriyanto Ardjo Pawiro

Abstract


Abstrak: Treatment Planning System (TPS) merupakan modalitas penting yang menentukan hasil tindakan radioterapi. Akurasi perhitungan dosis pada TPS dipengaruhi oleh algoritma yang digunakan. Berdasarkan database internasional, TPS termasuk salah satu penyebab utama terjadinya kecelakaan radiasi pada radioterapi. Oleh karena itu, TPS perlu diaudit secara dosimetri untuk memastikan akurasi dosis yang diterima oleh target serta mengurangi kemungkinan terjadinya kecelakaan radiasi pada radioterapi. Penelitian tentang audit dosimetri TPS berkas foton telah banyak dilakukan oleh peneliti di berbagai negara, namun hingga saat ini belum ada review artikel mengenai hasil penelitian-penelitian tersebut. Review artikel ini membahas tentang berbagai hasil penelitian audit dosimetri TPS berkas foton dengan algoritma yang berbeda di beberapa center rumah sakit. Terdapat beberapa jenis algoritma TPS yang dibahas antara lain: Adaptive Convolution (AC), Anisotropic Analytical Algorithm (AAA), superposisi, dan konvolusi. Audit dosimetri TPS menggunakan fantom CIRS 002LFC yang sebelumnya telah dipindai dengan CT-Scanner. Pengukuran dosis sebagian besar menggunakan detektor bilik ionisasi. Metodologi audit dosimetri mengikuti protokol TECDOC IAEA 1583. Sebagian besar deviasi hasil audit dosimetri TPS berkas foton berada pada rentang toleransi yang dianjurkan dalam TECDOC IAEA 1583. Deviasi diluar rentang toleransi umumnya ditemukan pada material inhomogen. Secara keseluruhan, berdasarkan hasil analisis, TPS dengan algoritma AC memiliki nilai deviasi paling kecil, selanjutnya AAA, superposisi, dan konvolusi. Nilai deviasi meningkat sebanding dengan energi berkas foton yang dihasilkan oleh Linier accelerator (Linac). Review hasil audit dosimetri TPS dengan algoritma yang lain dapat dilakukan sebagai pembanding.

Abstract: Treatment Planning System (TPS) is an important modality which determines the radiotherapy treatment result. The accuracy of the dose calculation in TPS is affected by the applied algorithm. Based on the international database, TPS is one of the main factors which cause radiation accidents in radiotherapy. Therefore TPS has to be audited dosimetrically to ensure the accuracy of the dose delivery to targets and moreover to reduce the possibility of radiation accidents in radiotherapy. Studies about dosimetry audit of radiotherapy TPS, especially for photon beam, have been done in many countries. Yet there has been no article review about those studies.  Because of that, authors attempt to review some studies relating with dosimetry audit of TPS with different applied algorithms in some radiotherapy centers. There are four different algorithms explaining in this article review, those are adaptive convolution (AC), anisotropic analytical algorithm (AAA), superposition, and convolution. Dosimetry audit of TPS used CIRS phantom 002LFC which had been scanned with CT scanner. Most of the dose measurement used ionization chamber detector. The procedure of this dosimetry audit followed TECDOC IAEA 1583. The deviation of most former studies results is on tolerance range. The deviation beyond tolerance range is found in heterogeneous materials. Based on the analytical result, TPS with AC algorithm has the smallest deviation, followed by AAA, superposition, and the last is convolution. The deviation increases with the beam energy. Review about dosimetry audit of TPS with others algorithms can be done for the next project.

Kata kunci : Audit dosimetri, TPS, algoritma, deviasi
Keywords: Dosimetry Audit, TPS, algorithm, deviation


Full Text:

PDF

References


International Atomic Energy Agency IAEA, “Commissioning and Quality Assurance of Computerized Planning System for Radiation Treatment of Cancer,” Technical Reports Series No. 430, (2004).

Fisenne dan M. Isabel. “Radionuclide concentrations in food and the environment”. Health Phys. 92, 407-408 (2007).

Internasional Commission on Radiation Units and Measurements, “Prescribing, Recording, and Reporting Photon Beam Therapy”, ICRU Report 50, September (1993).

López OP, Cosset JM, Dunscombe P, Holmberg O, Rosenwald JC, Pinillos Ashton L, Vilaragut Llanes JJ, Vatnitsky S., ICRP publication 112. A report of preventing accidental exposures from new external beam radiation therapy technologies, Annual ICRP Pub. 39(4):1-86 (2009).

Frass B., Doppke K., Hunt M., Kutcher G., Starkschall G., Stern R., et al. “American Association of Physicist in Medicine Radiation Therapy Committee Task Group 53 : quality assurance for clinical radiotherapy treatment planning”. Med Phys; 25 : 836-1773 (1998)

Mijnheer B., Olszewska A., Fiorino C., Hartmann G., Knӧӧs T., Rosenwald J-C., et al. “Quality Assurance of treatment planning systems. Practical example for non-IMRT photon beams”. Brussels : ESTRO (2005)

Nisbet A., Beange J., Vollmar H.S., Irvine C., Morgan A., Thwaites D.I. “Dosimetric verification of a commercial collapsed cone algorithm in simulated clinical situations”. Radiother Oncol; 73 : 79-88 (2004)

Cheng C. W., Das I.J., Tang W., Chang S., Tsai J.S., Ceberg C., et al. “Dosimetric comparison of treatment planning systems in irradiation of breast with tangensial field”. Int J Radiant Oncol Biol Phys; 38 : 835-42 (1997)

Davidson S.E., Ibbott G.S., Prado K.L., Dong L., Liao Z., Followill D.S. “Accuracy of two heterogeneity dose calculation algorithms for IMRT in treatment plans designed using an anthropomorphic thorax phantom”. Med Phys; 34 : 57-1850 (2007)

Paelink L., Reynaert N., Thierens H., De Neve W., De Wagter C. “Experimental verification of lung dose with radiochromic film : comparison with Monte Carlo simulations and commercially available treatment planning system”. Phys Med Biol; 50 : 69-2055 (2005)

Miften M., Wiesmeyer M., Kapur A. Ma CM. “Comparison of RTP dose distribution in heterogeneous phantoms with the BEAM Monte Carlo simulation system”. J Appl Clin Med Phys; 2 : 21-31 (2001)

Van Esch A., Tillikainen L., Pyykkonen J., Tenhunen M., Helminen H., Siljamaki S., et al. “Testing of the analytical anisotropic algorithm for photon dose calculation”. Med Phys; 33 : 48-130 (2006)

Knӧӧs T.,Ceberg C. Weber L., Nilsson P. “Dosimetric verification of a pencil beam based treatment planning system”. Phys Med Biol; 39 : 28-1609 (1994)

Asparadakis M. M., Morrison R.H., Richmond N.D., Steele A. “Experimental verification of convolution/superposition photon dose calculations for radiotherapy treatment planning”. Phys Med Biol; 48 : 93-2873 (2003)

International Atomic Energy Agency IAEA, “Commissioning of Radiotherapy Treatment Planning System : Testing for Typical External Beam Tretament Techniques,” TECDOC 1583, January (2008)

J. Lye et al. “A 2D ion chamber array audit of wedged and asymmetric field in an inhomogeneous lung phantom”. Med Phys. 41. 101712 (2014).

Rutonjonski L, Petrovic B, Baucal M, Teodorovic M, Cudic O, Gershkevitsh E and Izewska J, “Dosimetric verification of radiotherapy teratment planning systems in Serbia: national audit,” Radiation Oncology Journal. 7:155 (2012).

López M.C, et al. “Treatment planning systems dosimetry auditing project in Portugal,” Physics Medica. Mar (2013).

Gershkevitsh E et.al, “Dosimetric inter-institutional comparison in European radiotherapy centres: Results of IAEA supported treatment planning system audit,” Acta Oncologica, 53: 628-638 (2014)

Kasmuri S, S.A. Pawiro, “Dosimetry audit simulation of treatment planning system in multicenters radiotherapy,” AIP Conference Proceeding. 1862, 030074 (2017).

Gershkevitsh E, Schmidt R, Velez G, Miller D, Korf E, , et al.” Dosimetric verification of radiotherapy treatment planning systems: Results of IAEA pilot study,” Radiotherapy Oncology, 89:338–46 (2009)

Venselaar JLM, Welleweerd J, “Application of a test package in an intercomparison of the performance of treatment planning systems used in a clinical setting,” Radiother Oncol, 60:203–213 (2001)

AAPM (American Association of Physicists in Medicine), “Tissue inhomogeneity corrections for MV photon beams. Report of Task Group No. 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM)” Madison, WI: Medical Physics Publishing; . Report 85. (2004).

Kappas C, Rosenwald JC,”Quality control of inhomogeneity correction algorithms used in treatment planning systems,” Int J Radiat Oncol Biol Phys, 32:847–858 (1995).

Knoos T, Wieslander E, Cozzi L, et al,” Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations,” Phys Med Biol, 51:5785–5807 (2006)

International Atomic Energy Agency IAEA, “Absorbed Dose Determination in External Beam Radiotherapy An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water,” Technical Reports Series No. 398. Vienna. (2000)

AAPM (American Association of Physicists in Medicine). “Task Group 142 report : quality assurance of medical accelerators”. Med Phys. 36. 4197-4212.

Akbar, et al. “Verifikasi Dosis Perencanaan Terapi Teknik 3D-CRT Menggunakan Fantom CIRS 002LFC Berbasis Bilik Ionisasi, Film Gafchromic EBT3, dan TLD”, (2016).

Lehmann J et.al, “Dosimetric end-to-end tests in a national audit of 3D conformal radiotherapy,” Physics and Imaging in Radiaton Oncology, 6: 5-11 (2018)


Refbacks

  • There are currently no refbacks.


©2017 (onwards) Aliansi Fisikawan Medik Indonesia / Indonesian Association of Physicists in Medicine

Print ISSN: 2355-2727 | Online ISSN: 2355-2719